

LA-UR-16-26794

Approved for public release; distribution is unlimited.

Title: Efficient Workflows for Curation of Heterogeneous Data Supporting

Modeling of U-Nb Alloy Aging

Author(s): Ward, Logan Timothy

Hackenberg, Robert Errol

Intended for: This is a presentation summarizing a graduate research associates

summer project. This request is to clear it to be presented to his

thesis advisor and research group at his home institution

(Northwestern University).

Issued: 2016-09-07

Efficient Workflows for Curation of Heterogeneous Data Supporting Modeling of U-Nb Alloy Aging

Logan T. Ward, Robert E. Hackenberg Sigma Division Los Alamos National Laboratory 31 August 2016

Data Challenges in Materials

Materials Informatics: Extract Knowledge from Materials Data

Uncertainty Quantification

Balachandran et al. Sci Rprts. (2016)

Computing Infrastructure

hpc.lanl.gov

Aging in U-Nb Alloys

U-Nb alloys become hard and brittle with aging

Figure G10-a. Room Temperature Hardness Value for the U-4.5 wt% Nb Alloy. The samples were held 30 minutes at 850°C and then isothermally aged for the indicated times and temperatures.

Our Goal: Be able to predict hardening

Building an Aging Model

Typical Aging Experiment:

- 1. Cast a single batch of alloy
- 2. Divide into smaller samples
- **3. Age** them for different times, Temp.
- 4. Fit a property model

A few aging studies are practical, but there are many factors to consider...

- Alloy composition
- Grain size
- Statistical variation
- ... enough to become costly

Problem: Cannot run all the experiments **Potential Solution:** The literature!

The Literature

Different Phase Trans. in U-Nb

Problem: Different aging mechanisms, require different models

Another Need: Images of aged microstructure

The Challenge

Storing Materials Data

Model

Example Data Source

Two problems:

- How to organize this information?
- How to store it?

Organizing Data: What is a Schema?

Definition of Data Format / Structure

Why is this important?

- Simplify data processing software
- Ensure all relevant data is captured

What kinds of questions does a schema answer?

- What is the relevant data?
 "Hardness measurements have a scale and value"
- How are they related to each other?
 "Solutionizing is a processing step"
- What are the format requirements?
 "Temperature must be a real number"

What does a "XML Schema" look like?

```
▼<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified" elementFormDefault="unqualified">
   <!-- Imported types -->
   <xsd:include schemaLocation="physical-quantity.xsd"/> 
  <!-- Custom types -->
 ▼<xsd:simpleType name="hardness-measurement-method-type">
   ▼<xsd:restriction base="xsd:string">
      <xsd:enumeration value="vickers"/>
      <xsd:enumeration value="knoop"/>
      <xsd:enumeration value="brinell 3000kg"/>
      <xsd:enumeration value="brinell 500kg"/>
      <xsd:enumeration value="rockwell a"/>
      <xsd:enumeration value="rockwell b"/>
      <xsd:enumeration value="rockwell c"/>
      <xsd:enumeration value="rockwell d"/>
      <xsd:enumeration value="rockwell e"/>
      <xsd:enumeration value="rockwell f"/>
      <xsd:enumeration value="rockwell 15-N"/>
      <xsd:enumeration value="rockwell 30-N"/>
      <xsd:enumeration value="rockwell 45-N"/>
      <xsd:enumeration value="rockwell 30-T"/>
      <xsd:enumeration value="shore"/>
     </xsd:restriction>
   </xsd:simpleType>
   <!-- Actual Schema -->
 ▼<xsd:complexType name="hardness-measurement-type">
   ▼<xsd:sequence>
      <xsd:element name="measurement-type" type="hardness-measurement-method-type"/>
      <xsd:element name="measurement" type="physical-quantity-type"/>
      <xsd:element name="applied-load" minOccurs="0" maxOccurs="1" type="xsd:double"/>
      <xsd:element name="microindenter" minOccurs="0" type="xsd:boolean"/>
    </xsd:sequence>
  </xsd:complexType>
 </xsd:schema>
                                         Make fields optional
```

Import from other schemas

Hardness Measurement

Enforce data types

```
12
```

```
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <xsd:include schemaLocation="hardness-type.xsd"/>
 <xsd:include schemaLocation="note-type.xsd"/>
 <xsd:include schemaLocation="xray-diffraction-type.xsd"/>
                                                                          No "reinventing wheel"
 <xsd:include schemaLocation="material-composition.xsd"/>
 <xsd:include schemaLocation="material-thermomechanical-processing-type.xs</pre>
 <xsd:include schemaLocation="citation-type.xsd"/>
 <xsd:include schemaLocation="micrograph-type.xsd"/>
 <xsd:element name="literature-data">
   <xsd:complexType>
     <xsd:sequence>
       <xsd:element minOccurs="0" name="id" type="xsd:string"/>
       <xsd:element minOccurs="0" name="citation" type="citation-type"/>
       <xsd:element maxOccurs="unbounded" minOccurs="0" name="note" type="note-type"/>
       <xsd:element minOccurs="0" name="material">
         <xsd:complexTvpe>
                                                                                          hole
          Bottom Line: Schemas Are Not The Hardest Step
                                                                                          on process
                 <xsd:documentation>Who made this alloy</xsd:documentation>
             </xsd:eleme
                         © Last Slide with XML ©
                                                                   oe="material-composition"/>
             <xsd:elemen</pre>
                                                                   vpe="material-composition"/>
             <xsd:element minOccurs="0" name="processing" type="material-thermomechanical-processing-type"/>
           </xsd:sequence>
         </xsd:complexType>
                                                                           Can fit micrographs,
       </xsd:element>
       <xsd:choice maxOccurs="unbounded" minOccurs="0">
         <xsd:element name="hardness" type="hardness-type"/>
                                                                           XRD patterns, and
         <xsd:element name="diffraction" type="xray-diffraction-type"/</pre>
         <xsd:element name="micrograph" type="micrograph-type"/>
                                                                           hardness
       </xsd:choice>
     </xsd:sequence>
   </xsd:complexType>
 </xsd:element>
</xsd:schema>
```

Storing Data: MDCS

Materials Database: Materials Data Curation System

https://github.com/usnistgov/MDCS

Advantages:

- ✓ Already built / under active development
- √ Browser-based inputting, editing, viewing data
- ✓ REST interface for integrating with other tools

To-Do List:

- ✓ Designing schema
- × Efficiently importing data

Problem w/ MDCS: Slow Data Entry

Getting Literature Data into MDCS

Goals:

- Provide a simple import method No writing XML by hand!
- Hide the MDCS API in a black box

Solution: Excel + Python \rightarrow XML \rightarrow MDCS

Staging Data in Excel Document

16

Final Result: MDCS Records

Analyzing Image Data

Process for Making TTT Diagram

Procedure:

- Age alloys at many times and temps
- Evaluate fraction of transformed phase
- 3. Draw dividing boundaries

Rof. R. Jackson RED-1600

Goal: Create software to automate/assist this process

Ref: R. Jackson, RFP-1609.

Bottleneck #1: Image Analysis

Fitting a TTP Boundary

Current State: Many images, and fraction transformed

Mark Mark State (T. 4.)

We can fit a TTT curve with all our data!

 $me x_{Nb}$

Solution: Combing Kirkaldy and JMAEK Models

Kirkaldy:
$$t_{f=\beta\%} \propto \frac{\Delta T^{-3}}{2^{N/8}} e^{\frac{Q}{kT}} \alpha x_{Nb}$$

$$\mathsf{JMAEK}: f(t) = 1 - e^{-kt^n}$$

Result:
$$f(T, t, x_{Nb}) = 1 - e^{-kt'^n}$$

where:
$$t' = \frac{x_{Nb,ref}}{x_{Nb}} \left(\frac{\Delta T}{\Delta T_{ref}} \right)^3 \exp \left(\frac{Q}{k} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right) t$$

Ref: R. Jackson, RFP-1609.

Fitting a TTP Curve: Comparable Results!

How Does it Compare to Our Data?

Nb wt% tolerance:

0.5

Image Analysis Workflow

Summary So Far: Simple Procedure from Images to TTT Curve

Curating Hardness Records

INPUT

Before Peak Age?

Time at temperature —

 $f_1(t,T)$

Focus on two decisions

How can we automate, or simplify this process?

 $f_3(t,T)$

Which Transformation?

Different Transformation

- → Different Physics
- → Different Model

Q1: Before Peak Age? - Interactive Viz

Currently Editing: 1971jac2-Figure 15-8

Q2: Which transformation?

Automatically Linked to Image Analysis:

Use TTT Model from Earlier

Microstructure-Informed Model

Now we can curate by "before peak" and "transformation type"

Tracking the Entire Process

Building models often has many steps, and linking different tools

Problems:

- Updating model with new data
- Keeping track of decisions

Solution: Pinyon

Pinyon: Toolkit for Managing Model Creation

Guiding Principle: Store enough information to recreate a model

Goal: Collect all steps in model-building process

- Individual calculations
- How they link together
- "Post-It Notes", Documentation

Approach: Database with web interface

- Records all in one place
- Updated automatically
- Can be annotated

Tracking Individual Decisions

Entry Selection Table

Click on submit button to edit entry

Show 10 v entries Search:						
A	EntryTitle	NominalComposition	AgingTemp	AgingTime	FractionLameller	Edit 💠
260	1967jac2-Figure10a-0	U-8.4Nb	250.0	6.000000e+01	0	Edit
261	1967jac2-Figure10b-1	U-8.4Nb	350.0	6.000000e+01	0	Edit
262	1967jac2-Figure10c-2	U-8.4Nb	500.0	6.000000e+01	0.676767676768	Edit
263	1967jac2-Figure11a-0	U-4.6Nb	250.0	6.000000e+01	0	Edit
264	1967jac2-Figure8a-0	U-4.6Nb	350.0	6.000000e+01	0	Edit
265	1967jac2-Figure8b-1	U-4.6Nb	400.0	6.000000e+01	0.489583333333	Edit
266	1967jac2-Figure9a-2	U-6.4Nb	350.0	6.000000e+01	0	Edit
267	1967jac2-Figure9b-3	U-6.4Nb	400.0	6.000000e+01	0.03125	Edit
268	1967jac2-Figure9c-4	U-6.4Nb	500.0	6.000000e+01	0.833333333333	Edit
341	1967jac2-Figure11b-1	U-4.6Nb	350.0	6.000000e+01	0	Edit
Showing 1 to 10 of 64 entries				Previous 1	2 3 4 5 6 7	7 Next

Jupyter: Docs & Code in One File!

Fit a TTP Curve Using All Available Data

Fit a TTP Curve Using All Available Data ¶

```
In [7]: def time_adjust_factor(temp, nb, temp_ref, nb_ref, temp_monotectoid, Q):
    """Compute the multiplicative factor to convert a transformation time measured for one
    alloy at a certain temperature to a time for a reference alloy and aging condition

    :param temp: float, temperature of measurement in degC
    :param nb: float, Nb fraction of alloy being measured
    :param temp_ref: float, reference temperature in degC
    :param nb_ref: float, Nb fraction of reference alloy
    :param temp_monotectoid: float, monotectoid transformation temperature
    :param Q: flaot, "activation energy" fitting parameter
    :return: multiplicative adjustment factor"""

return nb_ref / nb \
    * np.power((temp_monotectoid - temp) / (temp_monotectoid - temp_ref), 3) \
    * np.exp(Q * (1.0/(temp_ref + 273.0) - 1.0 / (temp + 273.0))))
```

Jupyter: Ensure Whoever Inherits this Code Knows What It Does (and why!)

< 1

This reduces the equation to three fitting parameters: k, n, and Q.

```
assert time_adjust_factor(100, 6, 100, 6, t_monotectoid, 1000) == 1
```

Hardness Analysis Workflow

Procedures, Documentation, Notes, and Decisions All Linked Together!

37

Conclusions

Interconnected Workflow for Aging Models

- √ Storing Materials Data: MDCS
- √ <u>Hardness Curation:</u> Semiautomated Decision Making
- ✓ <u>Microstructure Data:</u> Web-Based Analysis Tools

Pinyon: Better reproducibility through integration

Future Vision:

- Improving the microstructure-aware aging models
- Adapting these tools to other property models

Acknowledgments

Funding:

People:

- Zachary Trautt, NIST
- Francesca Samsel, UT-Austin and CCS-7